This Research was Sponsored
by the National Aeronautics and Space Administration

Research Grant No. NsG-110-61

UL LARY DATA
THE SYNTHESIS OF A LAMINATED PLATE FOR
HIGH TEMPERATURE APPLICATION

Report No, EDC 2-64-7 _

REFURI® Luninul NGy e lomm

by

Lucien A, Schmit, Jr.

and
David E. Kinser
ENGINEERING
July 1964 SYNTHESIS

GROUP



ABSTRACT

Yz 5/

Synthesis has been defined as the rational directed evolu-
tion of a system configuration which, in terms of a defined
criterion, efficiently performs a set of specified functional
purposes. This work presents the application of the synthesis
idea to a system with a thermoelastic technology. The system
is a three layered plate; the-outer two layers of ceramic material
for thermal protection and the third layer of metal for structural
purposes., There are six design parameters; the density and the
depth of each layer. The behavior constrainté\ere the temperatures
at the surface and the two interfaces and the stresses at the
upper and lower boundaries of the third layer. Side constraints
are provided on the six design parameters.,

The merit function is the weight per unit surface area of
the plate. A steepest-descent alternate step synthesis method is
used. Results of three example syntheses are included with a
discussion of a possible pseudo-design parameter. The results
indicate that a thermo-elastic system may be successfully synthe-

sized,
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SYMBOLS

depth of ith layer in inches

upper limit on depth

lower limit on depth

layer subscript

node subscript

thermal conductivity

interface subscript

Stephan-Boltzman Constant = 3,34 x 10~
time variable

dimensionless depth

time increment

displacement in x direction
displacement in y direction
displacement in z direction

new design point

occupied design point

space increment

elastic modulus

force in x direction per unit length
force in y direction per unit length
shear force per unit length

heat load in Btu/inzsec

response matrix
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T temperature variable

T! temperature at time t + At
TIF interface temperature
Ti maximum allowable temperature
max
T0 initial temperature
TS surface temperature
W weight
o coefficient of linear thermal expansion
€ emissivity
€ strain in x direction
€y strain in y direction
A fixed distance of travel
Al variable distance of travel
v Poisson's ratio
Oy stress in x direction
oy stress in y direction
9y stress at upper surface of layer 3
°, stress at lower surface of layer 3
oyp yield stress
CH density of ith layer
p? upper limit on density
p% lower limit-en density
Txy shear stress
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o ¢

dimensionless weight
direction cosines

dimensionless density
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CHAPTER I

FORMULATION AND SOLUTION OUTLINE

‘ 1.1 Introduction
This work is part of the effort being made to study the
} application of structural synthesis ideas to a wide variety of
problems with different governing technologies.
Previous studies have been made of problems with tech-

nologies from the areas of structural mechanics(l), dynamics(z)

r and aeroelasticitycs)o

Thermoelasticity, the governing technology for this
problem, embraces the theory of the flow of heat and the theory
of strains and stresses due to the flow of heat.

The mathematical model chosen for study is shown in
Figure 1. The structure is a laminated plate of three layers,
square in shape, and of arbitrary dimensions., It is assumed to
be part of a similar but much larger structure.

The loading to which the plate is subjected consists of a
series of time dependent heat pulses applied at the surface.
Radiation cooling is provided at the surface and the lower
boundary is insulated.

Layers one and two are assumed to be composed of high
temperature resistant ceramic materials of variable porosity,

expressible in terms of the density, and of relatively high and

low thermal conductivity respectively. The first two layers are



assumed to be constructed in such a manner that each possesses an
effective modulus of elasticity low enough to reduce the induced
thermal stresses and any influence on the stiffness of the third
or structural layer to a negligible level. One way of providing
the effective low modulus of elasticity is to construct the
layers in a cellular or honeycomb form with spaces or plastic
material between the cells to provide stress relief, The

thermal properties of beryllium oxide and aluminum oxide are used
to represent the properties of layers one and two respectively.

The third layer is a metallic structural plate to which the
interpolated materials concept is applied. The thermal and
mechanical properties of this layer are assumed to be functions
of the density at a given temperature.

This type of heat resistant structure is '"passive" in the
sense that it depends on radiation cooling and heat capacity to
absorb heat loads of high intensity and relatively short dura-
tion(4).

Changes in the themmal and mechanical properties of the
materials composing the three layers due to changes in temperature
and density are considered. These relationships are shown in
Figures 9 through 17, The applicable equations are listed in
Appendix C.

1.2 Thermal Analysis

The heat flow in the structure is assumed to be one-

dimensional and is taken to be positive in the direction of the



applied heat pulse. The space and time dependent temperature
response within the structure is found by solving the one-

dimensional heat flow equation:

9 9 T, _ 9 T
77 &k 579 =ecyg

The boundary condition at the surface expresses the fact that the
heat absorbed by the structure is equal to the difference bet-

ween the applied heat and the radiated heat., This condition is:

-3

QL) - sa(Ts4 - To4) =kl

The lower boundary condition is:

9 T _

2=

3 2z
expressing the fact that no heat flows through the insulated
surface,
The resistance to heat flow between layers is assumed to

be zero therefore the boundary conditions for the interface

between the ith and i+15t layers are:
T1 = Ti*l
and
9 T 23 T
ki G2 iv1 52
i i+l

These equations mean that the temperatures of the two layers must

be equal at the interface and that the heat flowing out of the



ith layer must equal the heat flowing into the i+15t layer.

The consideration of the variation of the thermal properties
of the materials with temperature necessitates solving the heat
fiow equation by numerical means. A finite difference technique

is used and is discussed in detail in Appendix A,

1.3 The Elastic Analysis

Thermal stresses are assumed to be induced only in the
third layer and the thin plate theory is used for analysis. The
layer is subjected to two sets of edge boundary conditions. In
case 1 the midplane of the layer is allowed to expand freely but
the midplane deflection is kept equal to zero by appropriate
bending moments applied at the edges. This case represents a
condition of low stress in the material. Case 2 represents the
condition of high stress. In this case the midplane is neither
allowed to expand nor deflect by appropriate inplane forces and
bending moments applied at the edges. Possible buckling of the
plate in this case is not considered. The elastic analysis is

discussed further in Appendix B,

1.4 The Synthesis

The design parameters, the variables of the system which
must be assigned to completely define a design, are the three
densities P1» Por Pz and the three depths dl’ d2 and dso
Specification of the depths fixes the geometry of the structure.

Specification of the densities defines the porosities of the



materials composing layers one and two and the type of material
to be used for layer three., These six variables are constrained
only by upper and lower bounds on the values of each. These
bounds are called side constraints and the values used in this
problem are listed in the Results and Discussion section.

The maximum temperature in each layer, always occuring
at the surface and at the interfaces, and the maximum stress,
which occurs at the upper or lower surface of the third layer,
are the measures of the response of the structure to a given
heat input. These variables are termed the behavior variables
and are constrained by upper limits.

The design space approach is used in the synthesis of
the structure, The space is imagined as being formed by a set
of six mutually orthogonal axes with each design parameter
represented linearly along an axis, A design point is then
described by a six dimensional vector in the space.

The points comprising the design space may be divided
into acceptable points and unacceptable points, The acceptable
designs are those designs which do not violate either side
constraints or behavior constraints. The unacceptable designs
then are those which do violate one or more of these constraints,

It is impossible to separate off regions of the space

which contain unacceptable designs by explicit functions of the



design parameters. (Behavior functions). This is because of
the nature of the numerical approach taken in the solution of
the heat flow equation.

The object of the synthesis then is to find by some auto-
matic process that acceptable point or group of acceptable points
which causes the value of the merit function associated with the
system to assume either a maximum or a minimum value.

The merit function is an expression involving the design
parameters and is a measure of how much better one acceptable
design is than another.

The merit function for this problem is the expression for

the weight of the structure per unit area of surface:

d, + d, + d

19 7 P29 P3 93 -
The minimum of this function is to be sought by the synthesis
method.

The technique used to achieve this minimization is a steep-

est descent alternate step method which is discussed in Appendix D,



CHAPTER 11
RESULTS AND DISCUSSION

2.1 Results

Three cases are selected as examples of the synthesis process.
Case 1 and 2 represent low and high stress conditions in layer
three respectively., Case 3 is simply case 1 with the insulated
lower boundary replaced by a constant temperature heat sink.

The thermal loading to which the structure is subjected in
Cases one and two is a set of two heat pulses each of 100 second
duration,

The first pulse is defined by the following equations:

t < 0 seconds Q(t) 0 Btu/inzsec.

0<t <100 Q(t) 2 -0,02¢t

t > 100 Q1)

0

This is a triangular pulse with a maximum ordinate at t = 0
equal to 2 Btu/inzsec,

The second heat pulse is described as follows:

t < 0 seconds Q(t) 0 Btu/inzsec°

0<t < 100 Q(t) 1

t > 100 Q(t)

0

This is a rectangular pulse with a value of 1 Btu/inzsec.
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For Case 3 the duration of each load condition is shortened to

60 seconds to speed the analysis, Thus load condition 1 becomes:

t < 0 seconds Q(t) 0 Btu/inzsec°
0<t < 60 Q(t) = 2 - t/30

t > 60 Q(t)

0

and load condition 2 is:

t < 0 seconds Q(t) = 0 Btu/inzsec.
0<t < 60 Q) = 1
t > 60 Q(t) = 0

Two design paths are presented for Cases 1 and 2 and one path
for Case 3. The weight reduction as a function of time for each
design path is shown for each case in Figures 2, 5 and 8
respectively.

The designs presented for comparison for Case 1 are those
designs obtained after approximately 3000 seconds running time.
The designs for Case 2 are those reached after approximately one
hour of running time; and the design for Case 3 is that reached
after approximately 5000 seconds. The computing time required
to reach a minimum weight is due to the length of time necessary
to complete a design analysis, approximately 30 to 40 seconds.

The results for Case 1 are:



DESIGN PATH 1

Initial Design Final Design
py = 0.1 #/in® & =2.0dn. o = 0.1053 #/in> d; = 0,617 in
0, = 0.1 d, = 2.0 b, = 0.0749 d, = 1.186
pg = 0.2835  dg = 1.0 o5 = 0,0729 dy = 1,048
Weight = 0.6843 1b/in’ Weight = 0.2302 1b/in’

DESIGN PATH 2

Initial Design Final Design
py = 0.1048 #/in® d, = 1.702 in. o, = 0.1 #/in° d, = 0.66 in.
o, = 0.1091 d, = 1.863 o, = 0.0743 d, = 1.666
o5 = 0.0772 dy = 0.781 b5 = 0.0664 dy = 0.615

Weight = 0.4419 1b/in Weight = 0,2306 1b/in



The results for Case 2 are:

DESIGN PATH 1

Initial Design

py = 0.08 #/in’ 4, = 2.0 in.

py = 0.12 d 2.9

2

pg = 0.14 d 1.0

3

Weight = 0.6582 1b/in’

Final Design
py = 0.1 #/in° &, = 0.656 in.
b, = 0,0742 d, = 2.016
p5 = 0.1626 dg = 0.501

Weight = 0,2967 1b/in®

DESIGN PATH 2
Initial Design Final Design
py = 0.1 #/in d; = 2.5 in, py = 0.1068 #/in d; = 0.588
py = 0.1 d2 = 2.5 p, = 0.0793 d, = 1.569
py = 0.2 d; = 0.75 pz = 0.1638 d; = 0.646

Weight = 0.6509 1b/in’

Weight = 0.2930 1b/in®
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The results for Case 3 are:

Initial Design Final Design
py = 0.1 #/in° d; = 0.75 in. o = 0.0804 #/in® d; = 0.254
o, = 0.1 d, = 0.75 0, = 0.138 d, = 0,251
oy = 0.1 dg = 0.75 o5 = 0.0636 dy = 0.502
Weight = 0,2255 1b/in’ Weight = 0.0869 1b/in’

The emissivity at the surface for all cases is set at 0.5 and
the maximum allowable temperature in each layer is 4000°R, 3000°R
and 1000°R respectively, The stress limits for layer 3 are
shown in Figure 17.

The upper and lower limits on the design parameters for

all cases are:

p% = 0.0665 #/in> pg = 0.108 #/in>

ol = 0.0741 oV = 0.1445
2 2

ol = 0.0631 oV = 0.2835
3 3

& = 0.25 in. & - 3.0 in.
1 1

a = 0.25 & = 3.0
2 2

a = o5 ¥ = 2.0
3 3



The limits on the densities and temperatures are controlled by
the limits used in the material property data. The bounds on

the depths are arbitrary.

2.2 Discussion

2.2.1 Case 3

Case 3 is included to test the program by showing that
the best thermal structure with a heat sink boundary condition
is no structure,

That the structure has a tendency to disappear for this
condition is shown by the fact that dl' dZ’ d3 and ps are
essentially at their lower limits,

The temperatures in the structure are at a maximum at
the surface and at the first interface for load condition 1 and
therefore the design is '"on" a behavior constraint. Any further
reduction of Py and Pys by decreasing the conductivity, would
result in a violation of the temperature constraint.

It is not known why P1 and p, assume a low and high value
respectively. This is opposite to the behavior of the designs
in Cases 1 and 2 which are discussed next. The reversal of
relative values may indicate the fact that relative minima
exist although this idea is not examined further.

Obviously by providing some cooling at the lower boundary
the weight of the thermal structure can be reduced but a weight

penalty may be paid in providing the cooling mechanism.,
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The weight reduction as a function of time for Case 3

is shown in Figure 8.

2,2,2 Cases 1 and 2

These cases are the ones of greatest interest. The
weight reduction as a function of time for each case is shown in
Figures 2 and 5 respectively. In Case 1, the initial designs
are of considerably different weight and yet converge to two
final designs of nearly equal weight, the difference being 0.17%.
Design path 2 for Case 1 was allowed to run to 7000 seconds,
Only a 0.4% weight improvement was realized over the design at
3000 seconds.

For Case 2 the paths, initially at essentially the same
weight, diverge during the synthesis and reconverge after a period
of approximately one hour., The weight difference for the two
final designs in Case 2 is 1.2%.

Two design paths are run for each case to attempt to
reach the same final design. That this is not accomplished is
obvious by examining the values of the design parameters for
each design path.,

For both cases the density design parameters show more
similarity than the depth parameters indicating a lack of sensi-
tivity of the response of the structure to its geometry.

For the two final designs in each case, the density of
layer 1 is fairly close to its upper limit resulting in a relat-

ively high conductivity for this layer; for layer 2, the density
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is near the lower limit resulting in a relatively low thermal
conductivity.

The density of layer 3 for both runs in Case 1 lies in
the magnesium range reflecting the fact that little high tempera-
ture strength is required for the lowest stress case.

In Case 2, the density of layer 3 for both runs lies in AR
the titanium range. This material posses sufficient high tempera-
ture strength and a low coefficient of linear thermal expansion.
These properties combine to provide a reduction of the thermal
stress and an avoidance of the stress constraint.

Temperature constraints.are the only active ones for both
cases, Although the stress constraints were active during the
synthesis for Case 2 the final designs for both runs are not
bound by these constraints,

The weight of the designs in Case 2 is higher than that
in Case 1 due to the use of the higher density metal in layer 3.

For the designs of Case 1 the temperature respomnses at
the surface and the two interfaces for load conditions 1 and 2
are shown in Figures 3 and 4,

The temperature response at the surface and the first
interface is essentially identical for both designs in both
load conditions throughout the time of analysis and is shown
only up to the maximum value, The curves are separated on the
drawing for clarity. The greater thickness of layer 2 in design

2 causes a delay in the time at which the maximum temperature
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in layer 3 is reached. The temperature constraints which

act on the system are the maximum temperature of the third
layer, reached in load condition 1, and the maximum temperature
of the first layer, reached in load condition 2.

For Case 2 the temperature responses are shown in
Figures 6 and 7, Again the response at the surface and at the
first interface is essentially identical throughout the time
of analysis for both designs for both load conditions. In this
case, the maximum temperature response in the third layer of
design 1 for load condition 1 is delayed by the greater thickness
of layer 2, The same temperature constraints active in Case 1
are also active in Case 2,

Although the weights of the two runs for each case are
essentially the same, the designs are not identical., The
differences are explainable in terms of the heat stored in each
design as a function of time,

In Cases 1 and 2 the heat stored in any system at any

time, t, is given by:

t t
Qrored * l Q(t) dt - se i [ - T4 at
0 0
Since s and € are assumed constant they are removed from the
integral sign. This equation is valid for either load condition
1 or 2. In both cases the greatest amount of heat is transmitted

to the structure during load condition 1 due to the lower surface
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temperatures.

The surface temperature response of the two designs in
Case 1 is the same. The response is also the same for the two
designs in Case 2.

Thus, from the heat storage equation it is seen that
designs with the same surface temperature response contain the
same amount of heat energy at any time t, From this point of
view, the designs in Case 1 are the same and those in Case 2
are the same. The ability to store heat energy is termed a
pseudo-design parameter.

It is impossible to express this heat storage ability

in an analytical fashion due to the non-linearity of the problem

and the numerical approach used in its solution,



CHAPTER III
CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

This work has shown that synthesis ideas may be applied
successfully to a system with a thermoelastic governing
technology.

The system which was investigated was a three-layered
plate subjected to heat pulses at the surface. The problem
was to design the plate for minimum weight such that maximum
allowable temperatures and therma; stresses were not exceeded.

Attempts to double-point designs were not successful,
However, from the point of view of the weight and a pseudo-
design parameter, the heat storage ability, the designs were
shown to be essentially identical.

It cannot be said that the synthesis technique leads to
an absolute minimum weight design. It can be said that the
synthesis program results in a design improvement although
some confidence in the 'ability of the program to reach a minimum
in this problem is felt from the fact that double-pointing
resulted in designs of essentially the same weight.

The analysis portion of the program is general in that it
may be used to solve any one dimensional heat flow problem as

long as the themmal properties are known.

-17-
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The synthesis program is restricted to a problem of this
type where the merit function is not "pathological' (is
continuous in value and slope) and does not have zero or nega-

tive gradient components,

3.2 Recommendations

Originally all three layers were assumed to sustain thermal
stresses, It was found in early analyses that the stresses in
the brittle ceramic layers were too high, greatly exceeding the
rupture strength of the materials, A lack of a suitable ceramic
failure criterion and a knowledge of the fact that structures
of this type have been built and subjected to very high
temperatures led to the assumption of low effective modulus of
elasticity for the ceramic materials,

It would be interesting to include the ceramic layers as
an integral part of the load bearing structure if a failure
criterion and modulus of elasticity data were available,

It would also be interesting to include a temperature
dependent emissivity at the surface and a maximum temperature

for layer 3 which would depend on the material used.
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Appendix A
THERMAL ANALYSIS

An explicit type of finite difference solution to the heat
flow equation is used,(S) Each layer is divided into n, sub-
layers or nodes of thickness Az, = di/ni and the material
properties of each node are assumed to be constant at time t. It
is also assumed that the temperature at the center of any node at
time t + At is dependent on the temperature of the node, the
temperatures of adjacent nodes, and the material and geometric
properties at time t.

A heat balance equation is written equating the net heat
flow into a node to the heat stored in the node during a time
interval At, This equation may then be solved for the tempera-
ture of the node in question at time t + At.

For the jth node of the ith layer, shown in Figure 20-a,

the heat balance equation is:

k. .+ k. k.+k.
-1 . or.1e At ity . ogr . At
Ml - Ty Tyl g - e e [Ty 3

1 1

. Cc. Az. (T - T.
JR z;( : J)

This equation may be solved for the temperature of the jth

node at time t + At:
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T =T, + . . .- T,
] b, 7 K1 (T5.1 T)

DC AZ

# k(T 7 205+ Typqd- Kyyq (T - Typp)]

This equation is valid for all interior points of the ith

layer,
The average values of the conductivities of the adjacent nodes
are used to provide a better approximation.

At the surface the radiation boundary condition is approxi-
mated by assuming that the surface temperature is the tempera-
ture at the center of a subnode of depth Azl/S.

This may be seen in Figure 20-b. A heat balance equation for

the subnode gives:

at[T, - T,]

4 .4 s - -
Qat - se at [T, 14 - 3k, o~ =

1

' .
Py €1 824 (TS Ts)

This may be solved for the surface temperature at time

t + At:

Ty =T+ bt [Qazy - se a2 (T - %
P11 47

-3 k1 (TS - Tl)]
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The heat balance equation for the first node becomes:

k, + k
4 . 4 At
Q at - se ot [THT0) - (Sof] [TTy] - e

LI
Py 82 (Ty' - Ty)
The temperature of the first node at time t + At is:

At 4 4
T)' =T, + —=—y [2082; Q- se (T, - T,

Zplc1 Az1

)

The interface temperature at the qth interface between the ith
and i + 15t layer, see Figure 20-c, is found by writing the heat

flow equation for the nodes adjacent to the interface:

[T, - 2 k, - T,
2 k; [T; - TIE ] jap (TIE, = T4 )

A Zj
k. T. + K'E+" [k.+1 T.+1]
1 Az
k. + k.
j A Z:41 j*+1

where j denotes the interface node of the ith layer. The first

interface is taken to be between layers 1 and 2 and the second

interface is between layers 2 and 3.



A heat balance equation for the jth node on the qth inter-

face is:
k. ,+k.
-1 . _ At - . At =
[y [11°T] 34 on - 2 kg [Ty - TIF ] T

.¢c. az. (T.' - T.
leA1(J J)

The temperature at the interface node at time t + At is:

Tyh=Ty """"'75 [Ty.0 (k5 Kyp)

2p. c Az
- T.(k. , + 5k.) + 4 k. TIF
J( j-1 J) J q]

where j denotes the interface node of the ith layer, and in a

similar mamner it is found that:

At
T =T. +
J

J
2p Pi+] cJ Az 12

(a5 * K500 = TG00

+ 5k,
3
+ 4 k. TIF
j TTFq]

where j denotes the first node in the j+15t layer.

The temperature equation for the last node in the third layer is:

T.' = T. + k. + k. T. - T,
5T ~————73CJ o [k + k) (T;) - T))]



The reason for setting up approximating equations for the surface
and interface temperatures is that the maximum temperatures
occur at these points and they are therefore of greatest interest.
The temperature response of the structure is then repre-
sented by dividing the maximum temperature in a layer by the
maximum allowable temperature for the layer. Thus there are
three values which must be checked for each load condition to
see if a temperature constaﬁnt has been violated, The procedure
in determining the temperature response is as follows: starting
from an initial temperature distribution at t = 0, the material
properties are evaluated at each node and the temperatures at
each node, the surface, and the interfaces are calculated for
time t + At. The material properties are then recalculated
based on the new temperature distribution and the time is
incremented once more. This process is repeated until a maxi-
mum temperature is reached in each layer. Care is taken to

observe the stability relationship between At and Az which is:

At < 1 pc Az2

The number of nodes for each layer is fixed at the start of the
program and At must be less than the smallest value calculated
from this relationship.

The emissivity is arbitrarily set at 0.5 for the cases

discussed in this work, however the program is flexible enough



to include any variation of this quantity with temperature,

etc. The initial temperature throughout the structure is

chosen as 500°R, and the maximum allowable temperatures for
each layer are 4000°R, 3000°R and 1000°R respectively. These
limits are somewhat arbitrarily chosen but are mainly controlled
by the material property data.

The computer program is presented in Appendix E.
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Appendix B
ELASTIC ANALYSIS

The thin plate theory is used in the stress analysis of
the structural layer the material of which is assumed to be
homogeneous, and isotropic,

For a coordinate system with origin at the midplane of the

third layer the strain displacement relations are:(ﬁ)

€ = Lll - 2 a w

X X 3 2

X

e = 3V _, 0 2

y 3y 2 y
and = 2_2. + 3__\_1__ 2z 9 zw
Yxy Y X 3X 3y

Since the deflection of the midplane is zero:

32w - 82w _ azw -
> = = = 0
P

YJ 9X a3y

X Iy

Therefore the strain does not explicitly depend on z,

The stress-strain temperature relations are:(7)

E Ea AT

x T Tz b vyl s =
E Ea AT

o, = ——— [ey +vex]-=

Y l1-v



E
Ty =) (ny)
where AT =T - To

For Case 1, ny = Nx =N v = 0 and the applicable equilibrium

equations are:

Substituting the stress-strain relations into the equili-

brium equation gives:

E v E
EXJ-I—.—-\,TdZ#-eyl-l-———VTdZ-JEa AT dz = 0
z z z 1-V
c E dZ+eX [ v E iz Ea AT]Z-O
Y 1 -v" T) 1w J] 1-wv
and



The latter equation implies that ny = 0 and that there-
fore the x and y directions are the principal stress directions,

From the first two equations the conclusion is reached that

€ = €y and that therefore o, = o, = o
The quantity €y is given by:
r
Eo AT dz
)
e, = -&
X r (B'l)
E dz
J
z

These integrals are evaluated numerically in the analysis

h

program., The value for ¢ at the jt node of the third layer is:

E.
O'J- = r-:JTS- (Ex - G.J- ATJ-) (B-Z)
Poisson's ratio is assumed to remain a constant for layer
three.

For Case 2 from the stress-strain relations the stress in

the layer is simply:

0. = - dedo ] (B-3)
where € = ey = 0,
Since a biaxial state of stress exists the von Mises criterion is

used to define failure of the material due to stress. This



relationship is:

yA
g

The maximum stress may occur at either the upper or lower
boundary of the third layer. Therefore two points must be
checked to see if a stress constraint violation has occurred.

The computer program is presented in Appendix E.



Appendix C
THERMAL AND MECHANICAL PROPERTIES

For layers 1 and 2 the density is used as an independent
variable in describing the material properties. The relation-

ship between porosity and density is:

porosity = [1 - '{h] ]

Layer 1 - Beryllium Oxide

Conductivity Equations - Figure 9
for o = 0,108 lbs/in3 (dense material)10

-2 .
K 186 x 10 - 43.4 x 1072 Btu in (c1)
T in“sec®R
for p = 0.0826 (23.5% porosity)
93,8 x 10”2 -5
k e - 15,05 x 10 (€2)
T
for p = 0,0665 (38.5% porosity)
54.2 x 10”2 -5
k -—-—:——-—-—-——-— - 4e17 X 10 (CS)

T
For values of the density which lie between the above values

the conductivity is found by linear interpolation.
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Specific Heat Equation - Figure 12(10)

for S00°R < T < 2000°R

7.2 3 Btu

T

C=-1.2x10 'T° + 0,478 x 10" T + 0.03 (c4)
1b°R
for T > 2000°R
C =6.5x10° T + 0.38 (C5)
Layer 2 - Aluminum Oxide:
Conductivity Equation - Figure 10
for p = 0.1445 1bs/in> (dense material)ll
24,3 x 1072 -5  Btu in
k = 22X 20 .1,422x10 (C6)
T in“sec®R
for p = 0,110 (23.4% porosity)
18.7 x 1072 -5
kK = 28.0xX10 1922 x10 (%))
T
for p = 0.0741 (48.7% porosity)
13.8 x 1072 -5
k = o - 2.2x10 (c8)

T
A linear interpolation is used to find values of k for

densities which lie between the values given above.

Specific Heat Equation - Figure 12(10)
for S00°R < T < 2000°R



3 Btu

1b°R

C=-8x108T2+0.28x 103 T+ 0.05 (C9)

for T > 2000°R

C= 2.5x10°°T + 0.24 (C10)

Layer 3
Conductivity Equation - Figure 11(10)

for 0.0631 < p < 0,166 1bs/in’

at T = 500°R

k=-7.25 x 1052 + 1.5 x 10" - 4.79 x 1073 Btu in

in“sec®R
(C11)

at T = 1000°R

k=-59x101%+122x10 % - 3,58 x10°  (c12)
for 0.166 < p < 0.2835
at T = 500°R

) -4 -5

k =-0.11x10"% +45.3 x 10 (C13)
and at T = 1000°R

k = 4.26 x10°° o + 24.35 x 10°° (C14)

for values of the temperature between 500°R and 1000°R k is

found by linear interpolation,




-54-

Specific Heat Equations - Figure 14(10)

for all values of the density at 500°R

-]

C = 0.180 + 0.0667 tanh [26.11 (0.118-p)] —t2 (C15)
1

Corrections due to temperature are:

for 0.0631 < p <0.0978

5

AC = 7x10°T - 0.035 (C16)

for 0.0978 < o 5_0.166

AC = (-0.289 p + 0.063) ° (Bsz_ - 1) (c17)

and for 0,166 < p < 0.2835

AC = (-0.0113 o + 0.0172) °* (5%'6 - 1) (C18)

These corrections are added to the value found for a

given density at T = 500°R.

Modulus of Elasticity - Figure 15(7’8'9)

at T = 500°R
. 6 6
E =97.4 0 x 10° + 0.286 x 10 (C19)
for T = 1000°R
E = 102 p x 10% - 3.92 x 10° (C20)

A linear interpolation is used to find E for 500°R < T < 1000°R.

Thermal Expansion - Figure 16(10)

for 0.0631 < p < 0.166



for T = S00°R

o =-4.63x10% p%+2,0x105 + 14.4 x10°%  (c21)
for T = 1000°R
o = - 1.016 x 1075 0% + 11.7 x 1075 + 13.4 x 10°% (C22)

A linear interpolation is used to find « for 500°R< T <1000°R.
for 0,166 < o < 0,2835

« = 42.8x10°%, -2.2 x10°° (C23)
Yield Stress - Figure 17(7’8’9)
for T = 500°R
0 = (-79.7 x 10%) (cos (18.6 (p- 0.03))) + 9 x 10* 223
in
(C24)
for T = 1000°R
6 5% +7.39 x 10% - 3.76 x 10* (C25)

=~ 1,26 x 10
pr X [

A linear interpolation is used to find %n for 500°R < T < 1000°R,
The data is for use in illustrative examples. Improvements
and refinements in material property data could be inserted into

the program with relative ease.



Appendix D
SYNTHESIS

The technique used is a steepest-descent alternate-step
method in which the alternate step is made in the hyper-plane
tangent to the weight surface at a particular point.

The merit function is non-dimensionalized and the variables
scaled by dividing both sides by the product of a reference

density and depth, PR dR The dimensionless merit function is:

b T e T ety gty
The variables are scaled so that the design parameters and
gradient components with respect to the design parameters are of
the same order of magnitude. In this problem dR = 1,0 in. and
. .3
pR = 001 lb/m .

The response of the structure is expressed by a response

matrix:
Rll [ RlN
[R} = | ¢
LRSI veo Rey
-

where the row subscript corresponds to the behavior function
examined and the column subscript denotes the load condition.
For example for load condition one the elements of the response

matrix are:
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TSmax
R =
RZ _ TIF1 max
1 2 max
N _ TIF2 max
31 3 max
62
Ryy = ———  at upper boundary of layer three
2
°yp
o2
R51 = 3 at lower boundary of layer three.
g
yp

Thus whenever an element of the response matrix exceeds the
value 1 a behavior constraint is violated and the particular
design is unacceptable.

The merit function is thought of as forming a hyper-surface

in the design space. The gradient to this surface is:

Ve
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From this the direction cosines of the gradient, ; , may
be found.

The synthesis is initiated by starting from an acceptable
design point and moving a specified distance in the negative
gradient direction. This procedure provides the maximum weight

reduction and is expressed by:

-

Vo= v
X xo Ad

In this problem the value of A is set at 0.3, This value
is simply the result of experimentation and gives reasonable
changes in the values of the design parameters.

The new design is checked for violations of side and behav-
ior constraints and if there are none io is replaced by x ' and
a similar move is made. No acceleration of the move ig;provided
since the dimensions of the space are such that only one or two
moves of this type are necessary to cause constraint violation.
If violation of one or more side constraints occurs the distance

to the nearest side constraint, A', is computé‘and a new move

is made to the side constraint:

-~

|=~_|
X xo At ¢
The constrained point is then checked for behavior con-
straint violations., If there are none a move parallel to the

side constraints is made. This is done by moving in the negative

gradient direction and then equating the violated constraints to




=50

their lower limits., Moves are then made in the new direction
until side or behavior constraint violation occurs.,

When a behavior constraint is violated a quadratic approxi-
mation is used to find a point that lies '"on' a behavior con-
straint, i.e.,, a design for which the maximum value of any
element of the response matrix is one. The maximum response is
assumed to vary quadratically as a function of distance from
the last acceptable point to the point of violation., Using the
maximum values of the response matrix for each of these points
and one halfway between as data a quadratic function is set up.
The distance from the acceptable point to the desired point '"on"
a behavior constraint is then computed. This method worked
very well and convergence usually took place within one or
two cycles.

Once a point is found "on" a behavior constraint, the
alternate step is made. This is accomplished by moving a
specified distance,chosen as 0.5 in this problem, in the
direction given by the following procedure: Six unit vectors
are found in the directions of the points of intersection of the
tangent hyper-plane with axes parallel to the coordinate axes
and passing through the minimum weight point. This is done by

starting with the equation for the hyper-plane which is:

[(x'-x),¢] = 0

where x' in this case represents a point on the hyper-plane,
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setting all the design parameter values on their lower limits,
and solving for the point of intersection with each axis, The
process is illustrated in Figure 21. In this three dimensional
case Xl, X2 and X3 correspond to the design parameter axes; 91»
¢2 and ¢3 are the alternate step search directions from the
occupied point, Axes 1, 2 and 3 are parallel to X;» X, and

X3 respectively.

The six unit vectors are then used to generate other search
directions, This is done by taking all possible vector-sum
combinations of the six vectors. For example the six vectors
are summed one at a time, two at a time, three at a time, etc.
This process results in a total of 63 vectors which are all made
of unit length, Moves are then made the specified distance in
the plus and minus direction of each resulting in a total of 126
different moves.

Many of these moves may be prohibited if the occupied point
lies on a side constraint., If a side constraint is encountered
after moving the specified distance the distance to the constraint
is computed and a new move is made one-half this distance in order
to place the point in a supposedly free region.

The 126 new designs are ordered according to merit and
checked starting with the lowest weight design. If a new accept-
able design with a weight lower than that of the occupied point
is found, this design is taken as a new starting point and the

entire synthesis process begins again with a move in the negative



~ gradient direction.,

Acceptable designs of weight higher than that of the occupied
point are checked but these moves are not accepted unless a valid
design is found at a lower weight than that of the occupied point
after moving in the negative gradient direction from the higher
weight design.

If the problem is unsuccessful in finding a new acceptable
design after checking 126 nearby alternate designs the occupied
point is assumed to be the minimum,

A fixed number of search directions is chosen because it is
felt that there is no advantage in taking a random approach to
the problem due to the length of time, 30 to 40 seconds, needed
to complete each design check.

The program is outlined in Appendix E.



Appendix- E
COMPUTER PROGRAM

The computer program was written in the Algol 58 (Balgol)
compiler for the Univac 1107 Digital Computer. Included in
this appendix are a list of program symbols and a listing of
the entire program.

The analysis section was set up as a procedure or independent
sub-program. This made it possible to enter and leave the analysis
routine at any point in the synthesis program,

Flow charts for the program are shown in Figures 18 and 19.



PU
PL

DL

DPL
DPO
DPP
PSI
PHI

DP1
DP2

DPT1
DPT2
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SYNTHESIS PROGRAM SYMBOLS

upper limit on density
lower limit on density
upper limit on depth
lower 1limit on depth
design parameter (dimensionless)
upper limit

lower limit

initial design

new design

direction cosine
direction cosine
response matrix
auxillary matrix
auxillary matrix
auxillary matrix
number of nodes
initial design density
initial design depth
auxillary matrix
auxillary matrix
auxillary matrix
auxillary matrix
auxillary matrix

auxillary matrix



21
DPS

Pt

93I05< c <

TEST

auxillary matrix

auxillary matrix

weight

direction cosine

layer subscript

node subscript

auxillary subscript

auxillary subscript

number of load conditions

number of nodes in layer 1
number of nodes in layers 1 and 2
total number of nodes

load condition label

output of check procedure

number of elements in response matrix
auxillary variable

auxillary variable

auxillary variable

auxillary variable

auxillary variable

analysis procedure

quadratic approximation procedure
design test procedure

tolerance

distance of travel



ELL auxillary variable
IN auxillary variable
RMX maximum response

REIMIN auxillary variable
DIP auxillary variable

MU distance of travel




ANALYSIS PROGRAM SYMBOLS

D depth

P density

A space variable

ALPHA coefficient of thermal expansion
NU Poisson's Ratio

T temperature

TP temperature at t + At
o specific heat

K thermal conductivity
™M elastic modulus

YS yield stress

SF safety factor

TMAX maximum temperature
TIF interface temperature
TIFP auxillary matrix
EXTENT duration of heat pulse
RIM auxillary matrix

SIF1 stress case 1

SIF2 stress case 2

DIP auxillary matrix

T initial system temperature
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RUN 1300430 (50Ur500)

BAL Y9YYYy -
COMMENT SYNIHESLS OF LAMINATED HEAT SHIELD b
ARRAY PUOSI»PLISY e DU 2DLLS) v DP(6) v DPULE) s DPLIL) v DPO(H) »
DPPLE) 1 PSLE) e PHI(B) R(BUrD) e RP(BOIS) rRO(BUID) »
DPALE) r N L) v PULS) 2y DULB) 1Y (6) e UPW(B) e DPLIE) »UP2(0)
00126) e DPTL(B) 1DFT2(6)

L107096) eUPS150r0) P WT150) »CHI(TUrO) %
INTEGER IoJdeUrVeNUeGrHMpCRING ) o TESTINRMeTeFeSCeSIGrCHek2OC Do
bipP %

PROCEDUKE ANALYSIS (NOeMrGrHeNG ) oPRIDRIDPAC ISR(0)eW) 3
BEGLN :
AKRAY DU3) P (3)02(3) s ALPHA(LD) yNU(3) e  Tlo0)eTP(BU)»

Clou) rK(BU) s YMI0) +5TRESL{6U)Y e STRESZ2(60) rYS(00) 2 SF(3) o
TMAX(S) v TIF W) » TIFP (L) e XTENT(S) o RIM(BO¢S)

SIF1le) e SIF(B) 2 DTP(I) $

INTEGER IedeMe NU ) ¢ GeHeXeCOUNToVoCHrCRPNQ »ME?PNRM %
COMMENT HEAT TRANSFER PKOOGRAM TIME SPACE VAR $

FLOATING 2 %

FUR I=(1e1935)% SEGIN PUL) = ((PR)(LDPACL))) %
DII)=CLR) « (DPACT+3) ) ) BENDD

Nu = ¢ %
BUX10UOD..
NRM = 5 %

SF(3) = 1.0 %
NUL3)=zD.285 $

EX Ueb b 5Z3.36%%=15 $ UT=0.15TU=500.0%
EXTeENT(L) = 100.0 H eXTENT(2) = 10U.U %

VEINRM %

FUR I=(1s1eV) k BEGIN FUR J=(101»NQ)SBEGIN
ROIeJ)ZULUDRIML e J) =0 0BENDDENDD

CR=u%

BOXo0Uee LH = Cr + L %
IF CR GTR Nu % 00 TU HOX3u%
FOR J=(1elr4) 3 TLIF(J) = HOULU
FOR 12(1e193)s2C(DH=(DLI))I/ZINCL))Y
FOR JZ (1ol eMm)IBHeGIN TP(U) = 0.0 % T(J) = S50U.0% END %
LIALT = 1u.u**3 %
FOR JzZ(1lole)sTiFP(UIZHU0.0
TS = 50u.U %
TiMc=u«.U %
TRACK = 1.0 %
TMAX(1)ZUUUDULUSTMAX(2)Z300U0+ 05 THMAX(I)=Z1U0V.UD
BOUX30 e o

CUMMENT CUEFF OF THERMAL EXPANSLON PROGRAM ®
I=3s U=+l
BUX3leo,IF (PLI)) GEQ Oelbb b GO TO HBUX3I2 %
BUXS36ee IF (T(J)) LEG 1UOULY b GO TOU BOX33 $
IF (T(J)) LEY 150UV » GO TO HOX34 %

w0 Tu bOX30L S
BUXSUeo ALPHA(IIZU((1500eU=tT(J)})I/H0060) e (((=1.016%%=~3),
(PUL)) e (PULI) )+ UL e75%=5)  (P(I)))+13.Ux%k=5))
FOOOT U I=10000)/500eU) « (((=14836%%=3) 4 (P(L))e(P(]1)))
FU(2.78%%=4) J(P(1)))+9.55%x%k=p) )
GU O BUXSS %
BUXS3ee ALPHA(JIS(((L00UU=(TC(U))}/5000U) e (((=LabSxx=4]},
(PO ) o (PLIN) )4 eU4=5) o (P(1) )} ) +14 . 4%x=0) )+ ({(T{Y))=500,.0
1/795U0060) « (=1 e0]lo*4=3) e (P (L))o (PII)))+({L1e7%%=5) . (P(])))
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+13.U4%%-6)) %

BOX55ee IF J LSS M b BELVIN Uzd + 1 $ GO TU BOX30 % END %

60 TO BOX75 %

BUX32ee FUR JZ(H+1oLeM) DALPHA(J)IZ((42,8%%=6) o (P(I)))=2.2%%~6%
BOX75..

COMMENT END OF THERMAL EXPANSION FRUGKRAM $

COMMENT MODULUS OF ELASTICITY PROGRAM %

JEH+1S 123y

BUXoBee IF f(J) LEQ 150U.0 % GO TO HOX64 $

6GU [0 BUX30 %

BOXolsee IF 1(0) LEG 100UU $ 6O TOU BOX6S $

YMOD) = UET U /5006001 =2e0)  (((I3:T7%%6) P (I))=5:25%%6))
+{oeU=(TUUI/50U0)) e (L{1U2:0%%0) aP(]1))=3.92%%6)) $

GU TO HUXL6 $

HOXob5 e
YMEU)IZC(LU2.0%%0) o (P(L)))=3,92%%6) o (((T(J))/500.0)=1,0))
+ ((((97.4%26) o (PLI)))HU2B0%46) (240 = ((T(J))/500.0)))%
BUXuGee IF U GEW M B 60 TU 80X67 %

J=J + 1 % GU 10 BUXLB % !

BUXU?-.

CUMMENT END OF MOU UF ELAST PROOGRAM %

CUMMENT SPECIFIC HEAT PROGRAM %
FUR J=(u+lrleH) %
BeGLIN
ClU) = (=8, uxx=8) « (T(D) ) (T(UIN)+((D,28¢%=3) . (T(J)))+0,058
EnD %
FUR J=(19100)%
BeGIN
ClUI=(l=1,24%=7) o (T(U))e(T(UI)I+((0et478%%=3).(T(J)))+0.03%
END B
Y=(26e1) e (00118 = (P(3))) &
CP=(0e180)+((0.U607) « LLLEXP(Y))=(1,0/EXP(Y)))/
(CEXPY))+{L.0/7eXxP(Y))))) o
Llee 1F (P(S)) OGEW U978 % GU TO Le o
FUR J = (H+101vm)3d CUIZICPIH((7.0%%=5) . (T(J)}))={0.,035)%
GO 10 LY %
L2ee IF (F(3)) GEW Jelbb % GO TU LI %
FUR JdzimtirleM) & CLNIZCP + ((((=UL.2H9)(P(3)))+
0¢003) (((T(U))/H5U0.0) = 1.U))
GU O LY %
L3.. GU TO L4 %
L4ee FOR uz(H+1v1eM)D C(J) = CP + (L{(=U.U113).(P(3)))+
De0L72)e LLLTLY))I/DBNUWY) = 160 D)) 9
Lbee
COMMENT END OF SPLCILIFIC HEAT PRUGKAM %

CUMMENT THERYAL CONDUCTIVITY PRUGKAM %
1=25J=G+1%
IF (PLI)) GIR Uelilu b 60 TU BOX5ULU %
FOR J=(o+leleH)D
KO =P (1)) =0, u741) o ({28, 7%%=2)/1T(U))})
=1e222%%=5) )+ ((Uel110=-(rF (L)) ) e (((13.8%%x=2)/(T(J)))
=2.,20U%%=5))) /00569 Y
GL TO BUXSL %
HBUXo0e o
FUR JU=(G+lelrH) 9%
KISl (1)) =0el1110) e ({24, 80%%=2)/(T(U)))=1lolil22%%=5))
+0Ueuu=(P(1) D) e (LULBaT2%=2)/(T(J)))=1e222%%x=5)))/0.0535 %
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BUXH1es
IZ1 %u=i 9
IF (P(I)) GIR 0.0820 % GO TU BOXS5¢e %
FOR J=(1irlru) $
KT R (L) ) =04U665) « (13, 8%%x=2)/7(T(J)))
“195e05%4=5) )+ ({0 UBLO~{PLL)})) e (L (HY2%%x=2)/(T(J)))
4ol Tx%x=5)))/0sU101 b
GO TO BUXHS 3
BUKDZOQ
FUR Jz=(lrlru) %

KDL (P(I))=0.0820)
(((1BbaUd*=2)/{T(J)))=loali*xx=5))+({{0.208=(P(]))).
(L(93.8%%x=2)/(T(J)))=[5.05%%=5)))/0.0254 b
BOX53ee IZ3 & U= HHL
IF (PCI)) LSS 0elb6 % GU 10 13UXHY B
BUXL6es IF (THLJ)) GIR 1UDU.U $ 0O TU HOXSS $
K= (LT (U )/500eU)=1e0) o (L{Le2b%%=5) e (P([))) 42U, 55%%x=5))
Fl2a0 = ((T(UI/50U0.0) ) ll{=9,11%2%=4) . (P(])))+45.3%%x=5)) &
IF U GEuw M » 60 TUu g0X6U %

JZJ+1 b GU 10 BUXL6

HUXDSee KIJIZ(LI(U)I/500.U) =240} o ({(6e3%x%k=4),(P(1)))
+12.70%x=5))+( (5.0 = ((1(U))I/50UU)) o (((H4e20%%k=5)e(p(])))
+24 e 35%%x-5H )) %

IF 0 vEuw M 9 60 TU BOXk6U $

J = Jd+t 15 60 10 Buxhbe d

BUXolbee [F (T(J)) GTR 100U.U $ 60 TU BOADT %

KEJ)Z ((l2eud=((T(U))I/50060)) e (((=Te25%%x=~1) o (P(L))W(P(I)))+
(LS *%=)1) o (PUL) )= 7Y9%x=5) )+ (LTS I/H0VU)-t1eUD )W
((=594x%=1) s (P{I)) e (PUL)))+((1e22%%=1)(P(L)))=3:535%%=3))%
IF 0 6Eu M % 60 TU yOx6U %

J= U + 1% 00 Tu pOXby »

BUX27ee KIDIZT((30)=((i(U))/ SUDO)) e ({(~=Sa9dykk=])(P(])),
(POL)) I+ 0L e22%%=1) o (P(1)}))=3,.5352%=3) )+ ((((T(J))/ 500,0)
“2eU) e ((U=h o 15%k=1) e (P{L))(PLT)) )+ (1. 027%%=1)(P([)))
—ZellA*x=3)) %

IF U GEG M v 60 TU vOx6U

J=J+l b 6U TO BUXLY $

HUXo0. o

COMMENT END OF THERMAL LOND PROURAM %

COMMENT YI1ELD STKRESS PRUGRAM %
I35 U=H + 1 %
BUXY4es 1F 1(J) LEQ 150U.U % GO TO yOX9u $
w0 TU bOASUL D
HOX90es IF 1(J) LEQ@ 1UOU.U % GO TU BOX91 %
YSUIZ(SFOD Y e CCULUTCUI) /50060 =260) s ( (12 389%%x5) e (p(]1)))
=18.02%3)) + ((3.U = ((1(U))/50UeU)) e ({{=1e26%*0)

(PULY) o (PLI))) + ((7.89%%5) e (pP(L))) =3758U.0))) %
GO [0 dYuUXYZ 3
BUXYles BETA = (18.0)e(pP{l) = 0.03 ) %

YSUEUIZ(oF (1)) e (LUULCT(U))/50040)=160)
(({=1.20%%6) « (PLI)) o (PULI)IHL(Te39%x5) (P(I)))
=37%8U.U0) )+ ({20 = ((FLU))I/DOU.U) )W
(L{=74700+0) s (CUS (BETA) )+ Yu0UD.0)))S
BUXI2ee IF U GEw M » G0 TOU gOX93 %

J= $ GU TO BuX9Iu %
HBOX9S.e o
COMMENT END OF YIELD STKESS PROVRAM %

COAMENT START OF HTRESS PROGRAM b
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125U+ 1BASU.UTB=ULUD
AZA+((ZUI)/4,0) « LLUYMUU) ) o CALPHALU) )  (LTIF (3114 (T (U} )=
((2.0)(TW) 1)) + (LYMIM)) o (ALPHAIM) ) « CCTIF(4) )+ (T (M) ) -
((2.0).¢TUN))})) % :
BUX20se AZA + ((Z(1)/7240) e (CCYM(U)) « CALPHA(U) ) o (LT CUY) )=TO))
FUOYMIUHL) ) (ALPHAGUH L) ) o ((TLU+1))=TO)))) B

IF U £QL (M=1)3%00 Tu BOX21 %

JSJ+1% 60 TO pBOX2u%

BUXZ2Les J=H+1 %

BOX224 Bty + (CYMIJ) ) (201))) &

IF U EQL M 9 60 T0 g0Xx24%

J=J+1d 60 TU HOX22%

BUXZ3e o UXZA/B % XZHBJTHHLS
SIFLUL)Z(UYMU)Z(1.0~NUCL))) e (UX=((ALPHA (D) ) « LUTIF(X))=TO)) )%
XZ4p J=MD
SIFLE2)20YMIG) /7 (14 0=-NUTL))) o (UX=C(ALPHA (U} ) o ((TLIF(B))=TU) )} ) S
COMMENT END OF »TRESS PROGRAM 9

COMMENT RESPONSE MATRIX PROGRAM %
J=1p V=L IS1e URLD
BUOX201 e
ROI2CHIZTIF(UI/ZTMAXIV)S
IF U GEw 8 » 60 TO 30X2u0 %
USU+1$Vav+HlisI=I+ls 00 TO 80X201 %
BUX20Ues U= + 1 3 L= 1 ¢+ 1 %
RUIeCRIZU(SIFLOLD) L (STIFLIL))IZLEYSID) ) L LYS(UI ) S
JEMBIZIHIBRUTIPCRIZUISIF L)) o (SLF1(2)) )7 0L(YSIU) ) (YSID ) ) S
VENRM %
FOR I=(1e1eV)DBBELGIN FOR J=(1r1eNO)BHEGIN IF R(IevJ) GTR
RIA(Ivd) % BEGIN RIMUL»UIZRIIvJ)ISENDSENDIENDD
IF N(4) eQL )
BEGIN FUR I=(isleV)
BEGIN FUR J={1s1/NQ) %
BEGIN IF RIM(Led) GEQ 1.01 %
BEGIN N(4) = U % 60 Tu 4OX3US
END B
END 9
END %
EnND %
COMMENT ENU OF RESPUNSE MATRIX PRUOGRAM %

COMMENT LIMLIT PROGRAM %

BUX207+e AF TLIF(1) LSS 11FP(1)3%60 TU BOX3U0 $
L = TIME %

BOXA30U.e AF TIFL2) LSS (I+HPL2) v O TO BOX3UL1 %
Te = TIME B

BUOXS302ee FOR J=(1e1elt) » 1IFP(Y) = TIF(I) 9

GU 10 HBLUX305 %

BUX201lee LF TIMc 0EQ EXIENT(CR)IBGU TO BUX304%
GU TO HUXHLVe %

BOXo0Uee LIMITZCO(T2) e ul)+D(2))) =00 T tUt2))))/70(1) S
BUX303ee IF TIMe LSS LIMIT 5 0O TO pOX5U0 %

GU T0 yuXovlu %

COMMENT END OF LIMIT PRUGKAM %

BUX50U ¢ »

GU 1O BUXLZ2U %
BUX42U e o
COUMMENT DELIA T PROLGRAM b



VI1lp 1=1% J=NLI) b
BUX411lee DTPAVIZU(049) o (PLI)) ol ld) ) (Z201))a2C0) D)/
((2.0)(K(J)))}

IS + 1 %

IF U EQL M % GO TU HOX410 %

JIJ 4+ N(1) v VIV + L % 60 Tu 3OXull %

BOX410es DTEMIN(DIP(L) »uTPI2)sDIP(3)) $

IF UT GTR 2.0 $ DT = 2.0 %

COMMENT END OF DELTA T PROGRAM %

TiMc = JIME + DI $

IF CR EWL 2 % 6GU 10 HUX40Z9

COMMENT STAKRT OF HEAT PULSE ONE %

IF FTIME LEQ 1000 % BEGIN Q=((2.0)=~{((TIME)}/50.0))%G0 TO BUX401%
END 3

0Z0.0 %

GV 0 BUX40L %

CUMMENT END OF HEAT PULSE ONE b

CUMMENT HEAL FULSE TWO %

tBOX40c e » \

Ik TIME LEQ 1000 % BeGIN @=1.0% 60 TO BOX4ULl % END %
U=0e0 b

COMMENT END OF fEAT PULSE TWO %

BUX401 e GO 10 HBUX9TY

COMMENT TEMP UIST PROuRAM  §
BUXYTes GU 10 BUXY %
BuXdee i=1 »
X=()»J=1%
BUXYee A=X + N(l) %
BOX3a e bZUT/L(2.0) (I LU ZEIN(ZLI))) B
IF U 6Tk 1 » 60 Tu H0X2 %
TSP2TS R o (Ul w (200 )) = ((S)LLE)L(Z(TI)) L ((TS),
(TSI (TS)e(TS)) = ((TO) (10D (TU)(T0))))
- ((3.0) (KU)W 1S = (1C1))))))et2.0)) %
TPOLI=(T (1)) + (LE)a(({2eU) e (201)) o(Q = ((S)(E)
CCOFS D edTS D e s )ekTS  )) = (TR (TO)e(TO)(TUI)II)))
(k1) + K(2))el7(1) = T(2))))) b
J=J+1ls GU TO HUX)HT
BUXZes IF J EGL M % 60 10 BUXo &
IF U tQL X » 60 Tu 480Xx4 $
TPOUIZTOI)HFa LRl U=1) ) o (T LU=1) =T (U)))
FOOU) ) THU=L) = (2. 0TI )+T(U+1)) )= (K{I+1) )W
CTCU)=T(J+1))))) %
JZJ+l B GU 10 HUX B 7
BUXG .o TIMZ UKD )« CTEU)HCUL2C0I)) o (R (U+1) ) o (T(U+1) D) /7(2(1+1))))
ZUKE )+ LEZUID Yokl U+L) ) )/ 20L41)))) %
TIFCI+1) = (Im %
TP (T UM+ 0T (u=1) S LKD) I+ (K(U=1)) ) =T (D))
(IK(U=1))+ (56 M) e (KCUI DI D)+ (U)o (KEJ) ) e (TLIM)))) $
JoJ+1l b ITi+1 %

FZUTZ002.0 (PO LYY (201D ) 281))) P
TP+ ) s LT UL ) ) o KU D+ KO+ D))= (T (J)) e
(IK(JH1) )+ 050 0) e (KWJ) D)) +U{GeM) (KD ) o (TIM)))) B
JZJ+1l % GU 10 BUXY »

BOXDe o

TRPUDIZTID) + (F) e CUtK(u~1) + KU o (TlU=1) = T(IIII)) %
BUX7ee

TS = 1s5v b

TIFL1) = 15 %
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TIF(4) = TP(M) »
FOR J=(LlrieM)STLUIZIP(U)S
COMMENT END OF TEMP DIST PRUGRAM %

GU TO BUX80 %
BOX30. .

WZ0.0%

FOR I={1s1e5)% w= W + (P(L)D(I)) $

WRITE ( % % PARS) %

WRIVE (3 $ WEIGHT » HEAVY)D

V= WNRM b .
FOR I=(10s1sV)BBEGIN FOR J=(1le1eNQ)SHBEGIN R(LJI=RIMIL,JIENDSENDS
WRIME ( $ $ PAR4) &

WRITE ($ % RESP+MaAT) &

QUTPUT RESP ( FOR I=(1elreV) BIFOR J=(1leleNQISR{LPYI)) B
FORMAT MAT (2(Fl4.3¢83)rWe) 5

OUTPUY  WETOHT (W%

FORMAT HEAVY ( 1(F14.4)9W0)S

FURMAT PARD (*THE WelGHT IN LS PER SQ IN IS *»W0)$

FORMAT PARY ( % RLSPONSE MATRIX * » WO ) %

RETURN ENU ANALYSISL ) $

PROCEDUKRE CHECK (NGeM»R( ¢ )} % TESTeRMX) %

BLGIN

INTEGER NUeime TESTrIrJeV o NRM 3
TeST = 1 b

NRM=5S %

E= UeUl %

FUR I=(LredlriiRM) 3 HEGIN FOR J=(1¢1¢NGQ)3 BEGIN IF R(1r,J)
GTR ( 1.0 + E ) % FTEST = 0 % END B END $
RMXIMAX(RELe1) k(1 e2) e R(E201)eRI202) rR(301)eR{302)rR(40e1)y
R{4e2) eik{Hrl) ¢ R(S5e2) )%

WRITE ¢ % % PARL2 ) %

WRIIE ( % $ PARLD+:PARLL) %
UUTPUT PARLO (KMX) %

FURMAT PAK1L ( 1 (FL7.3)ewl)} %

FORMAT PARL1Z (*THE MAXIMUM RESPUNSE IS *x o WO ) %
RETURN ENU CHECKT ) B

PROCEUUKE QUAD (SeZeY( IBMU) o

i3EG AN

ALY (3)=Y (L) )/ ((Sen)=(LeS)))

(e (Y (2)=Y(1))) /02 (Ul5eS)=(2.5))))3

B((Y(2)=Y(1)) /L) = (AL) %

Cz=(y(1)) = ue99y b

MVODZ(Bets)=((Ha0)aAWC) &

MUZ (=R + SART(MVD) I/ (2.0).4) %

RETURN END QUADL ) b

ReLMIN = U %

DIP = O %
CKR=1
N{l) = 5 » NWN(2) = 4 » 1vl3) = 3 %
N(3) = ¢ 9

G=n1) » h=nll) + NL2) %

MENCL) +nle) +N(3) b

P05 D

£ = 0.0ul %

NM:S&

0«3 3

¥

N
L
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PZ0.8 b
N{4) = U %
N(L) = 5 %
GENe o

READ ( % % DATA )%
INPUT DATA (FUR I=(1lel103)9(PO(I)»LOC(I))) %
COMMENT CALC OF DPOeDPUDFLe AND CHECK ON INT DES %
FOR I=(1v193)38LGIN DPO(IIZPO(I)/FR BS0PUCL)=PU(L)/PRS
LPLOLI=PLL) /PR $ ENU
FOR I=(4rleo)$BeGIN DPO(IIZLO(I-3)/DRIDPULTI=DU(I~3)/DRD
DPLATI)=DLLI=3)/UR $ScNuD
WRITE ( % $ PAR3ISPAR23) %
QUTPUL PAR3S( FOR J=(lrleo)dDPLLU)) B
WRITE ( % % PAR36GIPARZ3) %
OUTPUT PAK3olFOR Juz=(1lr1le6)3uPuld)) %
FOR J=(1921r0)3DPU(J)Z(ENTIREC((LIUOV.U ) DPOCU)IIIZLU00,0 B
FOR J=(1+100)3DP0(J)=pPUY) + E %
FOR I=(1lr1e0)9DPALT)=pPULY) b
WRITE ( 2 % PARL) %
WRITE (% % DESePARL) ) L
ANALYSLS (NueMeGerHsn( ) ePReDRIDPAC IBR(r) W) %
CHECK (N@eMeRU ¢ ) 5 TESTeRMX) %

IF (RMX GEGQ 0.999) AND (RMX LSS 1.01) % BEGIN FOR J=(1,196)%
DPP(J) = UPUGY) & GU TO LS b ENU %
COMMENT THIS SECTION COMPUTES MOVE IN WNEG GRAD DIR %
COMHMENT INT DES OK BEGIN SYNTHESIS 5
L20ee TZ1d Y(T)ZRMXD
L2ee ELLZU«0
FOR I=(1leleo0)BELL=ELL + ((DPOCIN)(LPLLL))) S
LN = SOrT(ELL) S
FUOR I=(1rle3)PHI(T)I=(DPO(T + 3 ))}/LN %
FOR I={(4rleo) 3PHI(I)IZ(DPOC(YE - 3 ))/LN %
F=0 % MUSL % SC= u »
L3es
FOR 1=(1lrlre)SuPPL)=DPOCE)~C(MU) o (PHI(I))) %
FOR I=(10190)90PP(I)=(ENTIREC(L1U0UU ) (DPP(I))))I/1000.0 B
FOR I=(1lelro)dDPPLI) = pPPLL) + E %
FOR I=(1r1r0)% uPali) = PPPLI)
WRITE ( % % PARZ) %
WRITE ( % % DESPARL) ‘b
FUR I=(1rle0)dBEGIN IF UPP(L) LSS DPLLINS
BEGIN SC=19% MUZ(RPO (L) =DPLII))/Z(PHIC(I))® IF MU LSS E%
BEGIN FOR J=(19106)% DPP(JI=DPU(U)
60 Tu LS
[AN[BEY
GV TO L4%
EnNDD

' EnDY
FOR I=(1+1r0)30PA(I)=DPPL1) D
WRITE ( $ % PARY) b3
WRITE ( % % DES»PARL) b
N 4) = U %

ANALYSIS (NQemeGeHol ) ePReDReDPAC Y)BREP)1W) S

CHECK (NQeMeR( » ) b TESTIRMX) %
IF (RMX GTR 0999) AND (RMX LSS 1.01)% 60 TU LS %
IF TEST EuL 1 % BeGIN IF + EQL 1 9 .

BEGIN LF (RMX OTR U.999) AND (RMX LSS 1.01) % GO TO LS %
60 TO L4s ENL 9

IF F eQL ¢ » 60 Tu Lb %
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IF >C EuL 1 %
BEGIN
FOR JU=(le1e6)B0P0LJ) = DPPLJ) %
MU = L %
FOR JZ(1lele6)d DPP(J) = DPULY) - (MU C(PHI(U))) %
FOR J=(1ele6)D
bEoIN
IF LPP(Y) LEQ (LPLEY) + £)% DPPIJ) = pPLIJ) %
ENU %
ELL = V.U %
FOR U=tlelr6)s ELL = ELL + (((UPP(UD)=LDPO(J) ) ).
(LoPP(y)) - (PPULUI))) %

LN = SeRT(ell) %

FOR u=(10196)% PHIGY) =UDPOGY)) =(DPP(J))I/LN &
G0 TO L3 %

END) 9

IF (RMX GEQ 0e999) AND (RMX LSS 1.01) % GO TO 5 %
=1 %

Y(TIZKMXS FUR I=(lriro)s LPULL)ZDFP(L) L3

GO 10 Le  END b [
Lieso XTHMX B

SC = U %

IF F EQL ¢ » BELIN

IF Y(2) GIR 1.0 % BEGIN

Y(3)zY(2)% Y{2)=XD 5T4% 2= MU % GO TO L3I0 % END %
S=My 9 Yl3) = X % 6U TO L3O %

ENDD

IF F £OL 1 » BEOGIN

Y(2)=x% F=2% =mMUs 5= (2e0) MU %
GO 1O LY0 9 ENU D

YU3)=ad FI1d MUSMU/Z.0D GU TO LSS

LS0es QUAD (Sezrv () & MUY B
GV 10 L%
COMMENT ENU OF nNEGL ORAD DIR b

COMMENT THIS SECTLION COMPUTES W42 NEW MOVES b 3

LSee

IF RELMIN Ewl 1 %

BEGAN

N(4) = u ‘b
W=0e0 B FUR JZ(1eles)d wx= W + (LPPLU)OPP(J+3)) %
IF w GIK wP %
BEGIN

FUR Jza(leleu)s DPUlY) (DPT1C(J) + DPT2(Y)) / 2.0 %

FOR Jatlelro)uDPT2(u) = DPOLY) %
IF UIP EQL 1 $BEGIN WI(K) = 1U0u«U % CH = CH + L $ DIP = U %
IF LH Eub 126 % GU TO LY95 3 GU TO LY0 $ END %

FOR J=(191s0)30P0I)S(ENTIRLE(IU00.U ) (DPOCU))I))I/1000.0 %

FUR Uz=(1rlru)sDP0(UY)Z0PUIY) + £ %

FUR Jz=(1lvlrudd ukalyl) = DPOLY) B

WKITE ( 9 % PaRo) b

WRITE ( % % OESePARL) b
ANALYS1S (NrimeGeHrigl ) e PRIYDRI/DPAC ISR ) eW) B
CHECK (NQ@eMeRC v ) % TESTeRMX) %

DiIP = 1 %
GU TO Lei®
Eng b
RebminIZu 9
EnD %

wWPZUSOuFOR I=CLrled)iwr=aP + (UPPL)DPP(TI+3) )b
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WRITE U % 3 PARSZ) %

Dw=wP %
WRIFE ( 3 % PARZUIPAKZS ) %
ELL = 0.0 b

FOR I=(leleoldELL = ELL + ((OPPLI)).(DPP(I)))S
LNZSORTELL) D

FOR I=(1r1e5)9PSTII)ZDPPLLI+S) /LNS

FOUR I=(4/sls)dPST(I)=PPL1-5) /LN®

L80..

FOR I=(1,1r0)%

BEGIN

FOR JU=(1+100)% DP(J) = UWPLIJ) $

S1zU.U %

FOR u=llrlrp) 35151 + (PPPLY)PSII)) 3
S220e0 B

J=1y

Ldles IF U QL I % 60 Tu L4US
S2=52 + (LPLU)PSLLUN D
L40es J=J*+l 3 IF U LEQ 6 $ GO TO LU41D
prli) = (s1 - 52)/7(PSI(1)) %
ELL = 0.0 %
FUR J=(lvs1r0)% £LL = ELL + ((OP(U)=UPP(J)) (DR (W) =DPPLII S
LNZSOKTIELL) 9
FOR JU=(lrlro)BCHILIrvJ)Z(DPU)=DPPLJ))I/LN %
END %
I=Z6%
FOR K=(1le1s5)%
BEGIN
FUR J=(K+1rs1r0)%
BEGIN 1Z1+1%
FOR UZ(1:1¢6)9%
ZL(LeUIZCHI(K P V) +CHI(UPU) B
eND %
END %
FUR I=(7r1021)%
BEGIN ELL =v.U 9%
FOR J=(1r1r6)%
tELL=ell + (Z210ied)eZi(Led)) B
LNZSORT(ELL) D
FOR U=t1lelerl) D
CHIUIvUIZZ1(IvJI/LN B
EnD 9
1=21%
FOR KS(701010)0(12010148)9(30010»17)0r19 3%
BEGIN
IF K £QL 19 % V=13 %
IF K LEG 17 % V1Ll 9
IF K LEW 14 % Vab %
IF K LEw 10 % v=u %
FOR JZ(K=V2106)9%
BEGIN 1=Zi+1%
FOR UZ(19r106)9
ZAGA v UISCHI(K W) +CHLILUPL) B
eND @
END $
FUR I=2(z2221941)%
BEGIN ELL TUu.L %
FOR J=(1¢106)9%
ELLZelL + (Z1Gird)eZL(Ley)) 9
LNZSQRTIELLIS
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FOR J=(1ele6)9
CHI(I DI =1L D/LN B

EnD %
1 = 41 %
FUR KZ(c2019248) 0 (26010271 029¢(32¢1033)+35¢38 $
HBEGIN
Ir K QL 38 % V= 42 %
IF h LQL 85 $ V=29 %
IF KW LEG 83 % v=27
IF n Eul 29 » vZ3 %
IF K LEG 27 3 V=21 %

IF W LEG 24 % V=18
FOR J=(K=Vrlr6)d
BEGIN I=1+1%
FOK U=(1lrlrb)d
Z1CEHrU)SCHIK P U +CHI(UPU) &
eNL b
END $
FOR 1z{(u2r1eb0ls
BEGIN ELL =v.U0 3%
FO JZ(lrlet)
ELLZELL + (Z1Cled)eZi(ley)) o
LNZSQKTLELL) S
FOR J=(1lrlr6)%
CHIUI»IIZZ1(IvJI/LN B

END 9
I=50 %
FOR KZ(42e1e83)0845,48952 %
BEGLIN
IF LOL 2 $ V4o

[N
IF K EGL 48 % v=y2
IF K EQL 4% % V=39

I¥F K LEG 43 B vz3/

FOR JZ{K=Vrlr6)9

BEGIN ISI+1%

FOK U=(1rlrB)d

ZIL1yUISCHI(K /U +CHL(UPU) $

eND %
Eng D
FUR I=(57s1ehe)d
BEGIN ELL Zu.u 3

FOR JU=(1r116)9% .
LLZELL + (Z101ed) e 210L0u))
LiN=sORTELL) $
FO J={1lelr6)%
CHICIvJ) =1L JI/LN B
EnND %
FUR UzZ(191o0)3Z24 (030 UISCHLI(DT7:U) + CHI(bYU) B
1360 @
BEGIN ELL =u.U %
FOk J=(1ls1r6)%
cli=tll + (Z1(trd)eZL(LeJ)) &
LN=SQRTLELL) D
FOR J=(1lr1e6)%

CHICLPUIZLLUIWJI/LN B
EnD %
FUR JU=(1r1lrl20)b0(J)Zu 9
U=1lyw
FUR I=(1rlr03)%
BEGLN

Lo
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MUZD %
LH2e0s FUR JU=(1030p0)50P1LLYIZDPPID) +IMUCHI(IND)) &
FOR J=(1elro)DPYDIZENTIREC(LIU0ULU Do (DP1LU)IDII/ZL1000,0
FUR Jz={1r190)%DPL{J)=pP1(Y) + E 3
FUR J={lrieo)d vEuIn LF DPLIGY) oTKk OPUGY) B
LPLGU) = DP1GJ) - & % END 9
FOR J=(lelro)$BEGIN IF LPL(J) LSS DPL(J) % BEGIN
MUSH(DPLEY) = UPPLUNI/Z(CHIC(TPU))IBDIF MU LSS E % BEGIN
FOR V={lr1r0)30PS(UeV)IZLPPIV)D
olUI=u %
U=u+l %
GO 10 L0 % END % GO TO LLS2 $ END % END %
FOR J=(1¢1r0)38eGIN IF UPL{J) GTR DPU(J) % BEGIN
MUS(OPUGY) ~ DPPLEU)IZ(CHICI»U))SIF MU LSS E % BEGIN
FUR V=(1e1r0)$DPSIUPVIZUPPIV) D
otwi=zu %
Uzu+t %
GU 10 tb0 % END % GO TO L52 % END $ END %
FOR J=(1v1r0)% £1THER
IF VP1IU) LEQ (UPL(J) + E ) 3 '
BEGIN MU = MU/2.0 %
LF MU LSS (E/2+0)% BEGIN FOR V=(1lvslr0)$
DPS{UPV)I=DPP(V) $

oizu %
UzU+1 9%
GO TO Le0%
END 3
GV TO Lb2%
END %

OR IF 0OP1(J) GEw (DPUGJ) =& ) %
BEGIN MU = MU/2.0 %
IF MU LSS (E/2.0)% BEGIN FOR V={1l+1r0)%
PPS(U»V)IZDPP(V) S

olyl=uy %
Uz=u+l %
GV TO L60%
END $
GO 10 Lb2%
END $ENUS
FOR VZ(1lrlr0)3DPSUeVIZUPLIV) S
U=y+1%

Lo0e. MUZY &
Loles FUR J = (1010v0)9DP20y) = DPPU) = (MUCHI(IWJ)) B
FOR U=t19190)3DP2{J)=ENTIRE((1UOULU ) (DP2(J))))I/1U00.0 S
FUR Uz{lrlr0)sDP2(J)=pPc(y) + E 9
FOR J=(1rls0)% BEGIN IF LP2(J) 6IR DPUWJ) %
PP2U) = OP2(J) = £ % ENU »
FUR J={1r196)% BEGIN IF uPZ(U) LSS DPLGJ) B BEGIN
MU = (DPP(J) = DPLUJI)I/(CHIUIPJ))ISBIF MU LSS E 9 BEGIN
FOR V(1) 0PSULV)IZUPP Y)Y
o(u=u %
U=U+1% 00 TO L97%
END 3 GO TO LOL % END $ END %
FOR U=(1r196)% BLGIN IF LP2(J) GTR DPULJ) % BEGIN
MU = (DPP(J) = pPULUNIZ(CHITIPU)IIDBIF MU LSS E % BEGIN
FOR V=(lrele0)3DPS(UeVIZUPPIV) S
otulzu %
UsU+1l 600 TO L9779
END $ GO TO Lbl $ END % END %
FOR J={(1rlvs0)% cliHCR
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IF LDP2(J) LeQ (UPLIJ) + E ) 3
BEGIN MU = MU/2.0 $
IF MU LSS (E/2+40)35 BEGIN FOR V=(1r1+6)%
DPSU, V) =pPPIV) S

o)=L o
U=u+i %
GO TO LY7 %
END %
GU TO Lels
END %

OR 1F DP2(J) GEw (DPUIJ) = & )
BEGIN MU = MU/2.0 %
IF MU LSS (E/2.0)3 REGIN FOR V=(1lrls0)%
DPS(UVI=UPPIV)S

o(y) = u
UzU+1 %
GO TO LY7 %
END %
G0 10 Lols
END SENUS
FOR V=(lr100)30PS(UVIZUP2(V) S
UZU+ls
LY7o
END 9

CUMMENT END OF nibkw MOVE SECTIUN $

COMMENT THIS CALLS #T MATRIX 5

FOR I=(1elrl2b)3 pEoIny wI(I) = 0.0 %

FOR J=(1921»3)$WICL)ZWTLL) +(DPS(Ivd) DPS(IsJ+3))SENDS

COMMENT END OF WT MATRIX CALC %

WRITE (% % PARC6H) B

WRITE ( $ % PARZOsPARZY1 ) $

CUMMENT THIS CALC THE MIN Wl %

CH = U 9

LY)es U1 %

LY1lee FUR I=(1019)20) 8BLGIN IF WT(U) GTR WT(I) $ BEGIN UZL%60 TO

LYl % END $ END 3

CUMMAENT END OF wIN #T CALC %

Dw = wT(U) o

I=y %

WRITE (v % ATeMrPARG) B

WRITE ( 3 % PARZE) S

WRITE ( 5 % PARZUIPARZD)S

IF U eQL OlU) 3 BEGIN WilU) = 1UlUU $ LH=ZCH + 1 %

IF CH EubL 126 % GU (O LYS % 60 TO LY0 % END $

FOR Jz=(irlro)s UPA(Y) =pPSIUKY) &

N{4) = 1 %
ANALYSIS (NWeMeGrHrNTG ) oPRIUDRPDPAL )BR(0) W) %
CRECK (NQ!MeRLU ¢ ) b TESTeRMX) 9

IF 1EST EuL 0, B £e6IN wily) = 100u.Y 3
CH = Ch +13%
Ir CH Lol 120 $ 60O Tu LYs b

60U (O LY0D % END %
IF wT(U) OTR WP % BeGiM
FUR J=(1r1r0)s0PTLLO)IZOPRPIN S
FOR J=(lelro) 3DPO(J)IZUPS(UNY) &
FUR J=(lelro)sCrTetly) = DPS(UrJ) %
IF (RMX GIR 0.999) AND (RMX LSS 1.01) $ BEGIN
K= %
LobUUee FOK J=t(lrelre)duPuly) = (UPT1(J) + UPT2{(J))/ 2.0 %
KK+l % Ir K £0L ¢ b 60 Tu LBUOY
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FUR J=(lrelro)d uPT2(J) = LPUY) &
[F K 0L ¢ » pEoLIN
LU40Je s
Wiu) = 1ufuey % CH = CH + 1 %
IF CH Eul 126 % 60 10 LYS5 % GU TO LYD $ END $

L4003
FUR JZ(1e1o0)4DRPUGJIT(ENTIREC(LIUOULU ) (DPOLJII)II/ZLU00.0 B
FUR J=(lrlreo)$DPO0GJIZDPULY) + E &
FOR J=(lrlro)d vPald) = DEOLI) o
wWRIIE (% % PARD) b
WRIIE ( % % DESePaRL) b
N{4) = U %

ANALYSIS (NueMmeGoHeN( ) 2o PRIDReDPAL ISR ) W) 3

CHECK (NQeMeRO ¢ ) b TESTeRMX) %
IF ARMX GIR 0.999) AND (RMX LSS 1.01 ) % 60 TO L3V0 %
IF TEST EGlL D % GO TO LY0U %

EnD %

K=U %

RELMIN = 1 % GO TU L2U » ENU b

IF ®iMx OGEW U.99y b BEGIN FOR J=(19106)30PP(J)ZDPALU)S
D=0 eSS b

60 10 LY % LND »
FUR Jz(irlreu)d uPUlY) = DPALY) »
GU O L2 %
LYo
DD/ H.u B
DWw = U » WRITE ( % b PAR2U4» PARZS ) %
Ir v Lty t $ G0 TO Lu43 %
GO (0 L&) %
QUTPUT PAR22 (FUR U=(1lrlrl2b)sWilU)) %
QUTPUT PAKOL (FUR UZ(Lrlr03)5(FOR V=(1lelro)dCHI(UIV))) &
QUTPUT PARK2U (FUK US(191s126)5(UsWTIU) » (FOR VZ=(1e1,0)3DPS(UIV)I)I) %

CQUTPUT PAR24 (Dw) b

FIn

FURMAT PAR2S(1(F14,.8) ru)%

FURMAT HIb (#INLTIAL UESIGN INHLIRLITED*ewld)$

FORMAT PARS (DS PARLS AFTER CHECR ON DP CONSTRAINTS* e WU) S
FORMAT FARZ2 (+DS PARS AFTER MOVE In NEG GRAD DIR*ew0()%
QUTPUT DES ( FOR u=(1lrlr6)b0PAlU)) 4

FORMAY PAKRAZ (*x ThE VALUE OF WP 1S%.w0) 9%

FORMAT PARB ( 135 » w4 ) %

OUuTPU LTeM (1 ) b

FURMAT PAK2S (6(F14«8r1i0)rpu) %

FURMAT PAKL  1(F14«80153) rnt) %

FORMAT PAIK21L (I3r13301(F14.8/H5)06(FL10U4rBS)2¥Y) S

FUORMAT rAR20 ( * THo VESTON PARAMETER MATRIX IS*:W0)$
FURMAT 1PARK20 (xiht MINIMUM OIMENSLIONLESS WELIGHT 1S5%,wWU)%
FORMAY PAK27 ( *THE ODIMENSIOUNLESS WeIGHI MATRIX 1S*»wl) 3%
FUORMAT PAKkb { * THE DIMENSIVUNLESS OES PARS ARE * » w3 ) S
FORMAT PAR2Y ( L13r82r0{Fla.8:33)e0w0) %

QUTPUT MALL (FOR J=(1lrls0)BuPL(J)) 9

QUTPUT JUNK ( MU ) %

ourruT METI (U ) %

L43e.

FINISH %



